目的 制备负载黄芩苷的壳寡糖纳米粒,优化制备工艺,研究其对MCF-7乳腺癌细胞的抑制作用。方法 以黄芩苷为模型药物,采用离子凝胶法制备黄芩苷壳寡糖纳米粒。以包封率为指标,采用单因素考察壳寡糖溶液pH值、黄芩苷加入量、搅拌时间、壳寡糖加入量、三聚磷酸钠加入量等因素的影响,设计L18(35)正交试验进一步优化黄芩苷壳寡糖纳米粒的制备工艺;采用CCK8法对载药壳寡糖纳米粒在体外乳腺癌细胞株MCF-7 的细胞抑制作用进行评价。结果 最佳制备工艺条件为:壳寡糖溶液pH值为4.5,黄芩苷加入量为1.4 mg,壳寡糖加入量为140 mg,三聚磷酸钠加入量为4 mg,搅拌时间为10 min。黄芩苷壳寡糖纳米粒包封率(82.87±1.54)%,载药量(6.01±0.24)%,平均粒径(63.2±2.7)nm,Zeta电位(+19.6±0.6)mV。透射电镜下纳米粒呈球形或类球形,形态较为完整,分布均匀。体外细胞抑制实验表明对MCF-7细胞的增殖抑制,黄芩苷壳寡糖纳米粒较黄芩苷高;且随着时间的延长和浓度的增加,两者的抑制率差异越来越显著(P<0.05)。结论 制得的黄芩苷壳寡糖纳米粒粒径较小,对MCF-7乳腺癌细胞具有较好的抑制作用。
Abstract
OBJECTIVE To prepare chitosan oligosaccharide nanoparticles loaded with baicalin, optimize the preparation process, and study the inhibitory effect on MCF-7 breast cancer cells. METHODS Nanoparticles were prepared by the method of ionic cross-linking with baicalin as model drug. Based on results from the single factor tests, orthogonal experimental design method was used to investigate the factors influence on encapsulation rate of nanoparticels. The cytotoxicity of drug-loaded nanoparticles to MCF-7 cells in vitro were also investigated by CCK8 assay. RESULTS The optimum conditions for the preparation of baicalin-chitosan oligosaccharide- nanoparticels were: pH of chitosan oligosaccharide solution was 4, baicalin dosage was 1.4 mg, the dosage of chitosan oligosaccharide was 140 mg, the dosage of sodium tripolyphosphate was 4 mg, and the stirring time was 10 min.The mean diameter was(63.2±2.7)nm, encapsulation rate(82.87±1.54)% and the drug loading(6.01±0.24)%. TEM photos showed that nanoparticles were spherical or quasi-spherical, with relatively complete morphology and uniform distribution. In vitro cell inhibition experiments indicated that baicalin-chitosan oligosaccharide-nanoparticles showed stronger inhibition against MCF-7 cells. With the increase of concentration and time, the inhibitory rate of baicalin-chitosan oligosaccharide-nanoparticles on MCF-7 cells showed significant difference compared with baicalin(P<0.05). CONCLUSION The particle size of baicalin-chitosan oligosaccharide-nanoparticles prepared by this method is small, and it had better inhibitory effect on MCF-7 breast cancer cells.
关键词
黄芩苷 /
壳寡糖 /
纳米粒 /
制备 /
MCF-7 细胞
{{custom_keyword}} /
Key words
baicalin /
chitosan oligosaccharide /
nanoparticel /
preparation /
MCF-7 cell
{{custom_keyword}} /
中图分类号:
R944
R965
{{custom_clc.code}}
({{custom_clc.text}})
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
参考文献
[1] ZHOU M H, ZHANG M, ZHANG S, et al. Effect of molecular weight of polyethylene glycol on pharmaco- kinetics of baicalin. Acta Pharm Sin(药学学报), 2021, 56(5):1416- 1423.
[2] XU Q, OU Y Y, WU H F. Absorption Mechanism of Baicalin and its Solid Lipid Nanoparticles on Caco-2 Cells. Chin Pharm J(中国药学杂志), 2019, 54(12): 1000-1006.
[3] LEE D, KO W K, HWANG D S, et al. Use of Baicalin- Conjugated Gold Nanoparticles for Apoptotic Induction of Breast Cancer Cells. Nanoscale Res Lett, 2016, 11(1):381-381.
[4] WANG N, TANG L J, ZHU G Q, et al. Apoptosis induced by baicalin involving up-regulation of P53 and bax in MCF-7 cells. J Asian Nat Prod Res, 2008, 10(12):1129-1135.
[5] CHEN Y, WANG K, ZHANG L L. Research progress of liposomes coated with chitosan for drug delivery. Chin J Mod Appl Pharm(中国现代应用药学), 2021, 38(10):1251-1256.
[6] WANG Y J, JIANG X Y, LEI Y, et al. Preparations and evaluations of in vitro and in vivo characteristics . Chin J Hosp Pharm(中国医院药学杂志), 2021, 40(10):1005-1012.
[7] REN Z K, GAO W, LIU C, et al. Preparation of naringenin chitosan nanoparticle and its cellular evaluation in vitro. Chin Pharm J(中国药学杂志), 2017, 37(20):2056-2060.
[8] HE J Y, WU L, WANG J C, et al. Anti-tumor effect of brucine-loaded chitosan nanoparticles in vitro. Acta Pharm Sin(药学学报), 2016, 51(4):650-656.
[9] ZU Y G, ZHAO Q, ZHAO X H, et al. Process optimization for the preparation of oligomycin-loaded folate-conjugated chitosan nanoparticles as a tumor-targeted drug delivery system using a two-level factorial design method. Int J Nanomed, 2012, 6:3429-3441.
[10] HAO Y K, YANG X D.Research progress of drug- carrying chitosan nanoparticles. Chin Pharm J(中国药学杂志), 2005, 40(17):1292- 1295.
[11] LIU H, JIANG J Y, WANG L L, et al. Preparation of doxorubicin-loaded chitosan oligosaccharide nano- particles and its anti-tumor effect in vitro. Chin J Biochem Pharm(中国生化药物杂志), 2015, 35(1):25-29.
[12] WEI X H, NIU Y P, XU Y Y, et al.Salicylic acid-grafted chitosan oligosaccharide nanoparticle for paclitaxel delivery. J Bioactive Compatible Polymers, 2010, 25(3):319-335.
[13] UBONVAN T, HYUN JC, DONG HW, et al. Chitosan oligosaccharide-arachidic acid-based nanopartocles for anti-cancer drug delivery. Int J Pharm, 2013, 441(1-2):373-380.
[14] LIU Z J, LI X C, ZHAO M F, et al. Preparation and evaluation of hydroxy-loaded camptothecin nanoparticles in vitro. Chin J Hosp Pharm(中国医院药学杂志), 2015, 35(21):1910-1914.
[15] CAO J, ZHOU N J. Progess in antitumor studies of chitosan. Chin J Biochem Pharm(中国生化药物杂志), 2005, 26(2):126-127.
[16] XU X Y, SUN L P, ZHOU L, et al. Functional chitosan oligosaccharide nanomicelles for topical ocular drug delivery of dexamethasone. Carbohydr Polym, 2020, 227:115356. Doi:10.1016/j.carbpol.2019.115356.
[17] WANG Y, KHAN A, LIU Y, et al. Chitosan oligosaccharide-based dual pH responsive nano-micelles for targeted delivery of hydrophobic drugs. Carbohydr polym, 2019, 223: 115061. Doi:10.1016/j.carbpol.2019.115061.
[18] YI G, LING J H, JIANG Y J, et al. Fabrication, characterization, and in vitro evaluation of doxorubicin-coupled chitosan oligosaccharide nanoparticles. J Mol Struct, 2022, 1268: 133688. Doi:10.1016/j.molstruc.2022.133688.
[19] LI R W, LYU Y, LUO S M, et al. Fabrication of a multi-level drug release platform with liposomes, chitooligosaccharides, phospholipids and injectable chitosan hydrogel to enhance anti-tumor effectiveness. Carbohydr Polym, 2021, 269: 118322. Doi: 10.1016/j.carbpol.2021.118322.
[20] LYU F J, LIU J, YUAN X, et al. The Preparation of Baicalin-Chitosan-Nanoparticles by Ion-Induced Combi- ning Chemical Crosslinking. J Quanzhou Normal Univ(泉州师范学院学报), 2020, 38(2):1-8.
[21] LIU L N. Antitumor activity of doxorubicin conjugated stearic acid-g-chitosan oligosaccharide polymeric micelles . Hangzhou: Zhejiang University, 2010.
[22] WU R J, YU R F, YAN X X, et al. Preparation and in vitro evaluation of arsenic trioxide loaded pH responsive poly(lactic-co-glycolic acid) nanoparticles. Chin Tradit Herb Drugs(中草药), 2021, 52(15):4528-4536.
{{custom_fnGroup.title_cn}}
脚注
{{custom_fn.content}}
基金
福建省自然科学基金项目资助(2021J01967);泉州市科技计划项目资助(2018Z021);大学生创新训练项目资助(S202110399039)
{{custom_fund}}